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Sozer for discovering the following errors.

*p. 3, Definitions 1.2 and 1.3. The exposition of the definition of a CW-complex is
flawed in two ways. First, the text uses non-standard notation by letting eni denote a closed
subset of X, when traditionally eni denotes a subspace homeomorphism to the interior of
the n-disk, with the homeomorphism given by the characteristic map. Second, it is unclear
exactly what a CW-structure on a topological space is, and it is thus unclear when two
CW-complexes with the same underlying space are the same. The definition of cells and
CW-complex is clarified as follows.

If X is a topological space and A is a subspace, then X is obtained from A by attaching
n-cells if there exist maps ϕn

i : (Dn, Sn−1) → (X,A), i ∈ I so that the set theoretic function
A⨿i∈I (int D

n
i ) → X given by the inclusion of A and the restriction of the ϕi’s is a bijection

and so that the continuous map A⨿i∈I D
n
i → X is a quotient map.

The cells of X rel A are the images eni of the interiors of the disks Dn
i via ϕn

i . In
particular, X is the disjoint union (set-theoretically) of A and the cells of X rel A.

A relative CW complex (relative to A) is a pair of spaces A ⊂ X and a filtration

A = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ · · · ⊂ X.

The filtration satisfies the conditions that X = ∪nX
n, X0 is the disjoint union of A with

a discrete space, Xn is obtained from Xn−1 by attaching n-cells, and the topology on X
satisfies the requirement that a subset B ⊂ X is closed if and only if B ∩Xn is closed for
all n. The definition of a CW-complex is obtained by letting A be the empty set.

*p. 4, line -13. Change “The largest n” to “The smallest n”

*p. 7, line 11. ∂
(∑ℓ

i=1 ri⟨σi⟩
)
=

∑ℓ
i=1 ri∂⟨σi⟩.

*p. 9, line 11. Change “π(ai ⊗ bi)” to “π(ai, bi)”

*p. 11, line 11. Change “finitely generated groups” to “finitely generated abelian groups”

*p. 17, line -2. Change “γ : C → A” to “γ : C → B.”

*p. 24. In the right top corner of the first commutative diagram replace “Z” by “Z/2.”
Thus the sequence should read:

0 → Hom(Z/2,Z) → Hom(Z/2,Z) → Hom(Z/2,Z/2)

*p. 26. In the first displayed exact sequence of the proof of Proposition 2.4, replace “R/A”
by “R/a.” Thus the sequence should read:

0 → R
×a−→R → R/a → 0

*p. 32. line 11. Replace Z by Z− {0}.
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p. 36 line -7. Note that in Definition 2.21, an acyclic chain complex C∗ need not have
H0(C∗) = 0, and in particular C∗ is not exact at C0. This contrasts with the definition
of acyclic complex used in Chapter 11, (c.f. p. 334) where in that context one assumes
H0(C∗) = 0.

*p. 38 line 6. Change the C0 to Cn.

*p. 38 line -4. Change the C0 to M ′. The sentence should read “ Since ϵ′ ◦ (f0 − g0) =
(φ− φ) ◦ ϵ = 0 : P0 → M ′, ...”

*p. 39. In the first commutative diagram, the vertical arrow is mislabelled. It should be
labelled fn − gn − sn−1∂n. Also, the C1 at the lower left should be replaced by Cn+1.

*p. 40 line 3. Change to “Since Rn is projective...”

*p. 40 line 10. Change the “−” sign to a “+” sign; i.e. iϵ(p) + Φ(r).

*p. 44 line 18. Replace “Aq+2” by “Bq+2”.

*p. 46. Add a paragraph at the end of Part 2 of Exercise 30: The splitting of this map is
obtained by splitting the inclusion i : Z∗ → C∗, passing to a chain map

(C∗, ∂) → (H∗(C∗), 0),

applying HomR(−,M), and taking cohomology.

*p. 48. Replace the second to last sentence by “Since Q and R are both flat and injective
as Z-modules, Tor(−,Q), Tor(−,R), Ext(−,Q), and Ext(−,R) all vanish.”

*p. 49. The definition of a free functor F : A → C is not complete. The precise definition
is as follows. For each q ∈ Z one is given an indexed set {bj ∈ Fq(Mj)}j∈J where Mj ∈ M
such that for every X ∈ Ob A, Fq(X) is a free R module with basis {Fq(u)(bj) | u ∈
HomA(Mj , X)}.

*p. 52. ”If X and Y are finite CW complexes...”

*p. 53. If C∗ and D∗ are free chain complexes, the splitting in the Kun̈neth exact sequence
is obtained just like the splitting in the Universal Coefficient Theorem. If D∗ is not free, then
reasoning is more complicated and involves finding a chain homotopy equivalence D′

∗ → D∗
where D′

∗ is a free chain complex. For details, see the discussion in A Course in Homological
Algebra, by Hilton and Stammbach.

*p. 54. In the statement of the Eilenberg-Zilber Theorem, replace everything after “nat-
urally equivalent;” and before “for any” with “more precisely, there exist natural transfor-
mations A : F → F ′ and B : F ′ → F so that A(σ) = prXσ ⊗ prY σ and B(τ ⊗ ρ) = τ × ρ
for any singular 0-simplices σ, τ , and ρ in X × Y , X, and Y respectively. Furthermore,”

*p. 55. Replace “∆p” and “∆q” by “∆p” and “∆q’.’
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*p. 57. In the exact sequence of Definition 3.8 change “H∗(X × Y )” to “Hp+q(X × Y ).”

*p. 60. The proof that 1 ∪ α = α is wrong. Instead, first extend 1 ∈ S0(X) to act
on all chains by declaring 1(z) = 0 if z ∈ Sp(X) with p > 0. Then define a natural
transformation C : S∗(X) → S∗(X) as the composite of a diagonal approximation τ :
S∗(X) → S∗(X) ⊗ S∗(X) and the map E : S∗(X) → S∗(X) given by E(z ⊗ w) = 1(z)w.
The map E is easily checked to be a natural chain map, and hence C is a natural chain map.
By the uniqueness part of the acyclic models theorem, C is chain homotopic to the identity.
If α ∈ S∗(X), E∗(α)(z ⊗ w) = α(E(z ⊗ w)) = α(1(z)w) = 1(z)α(w) = (1 ×alg α)(z ⊗ w).
Therefore, C∗(α) = τ∗(E∗(α)) = τ∗(1 ×alg α) = 1 ∪ α. Passing to cohomology and using
the fact that C is chain homotopic to the identity gives 1 ∪ α = α.

*p. 60. Replace the first sentence of the proof of part 2. of Theorem 3.13 by the following.

The compositions of Eilenberg-Zilber maps

S∗(X × Y × Z) → S∗(X × Y )⊗ S∗Z → S∗X ⊗ S∗Y ⊗ S∗Z

S∗(X × Y × Z) → S∗(X)⊗ S∗(Y × Z) → S∗X ⊗ S∗Y ⊗ S∗Z

are natural transformations of functors on TOP 3 (triples of spaces). The functor (X,Y, Z) 7→
S∗(X × Y × Z) is free and acyclic on the models (∆p,∆p,∆p). The functor (X,Y, Z) 7→
S∗(X)⊗ S∗(Y )⊗ S∗(Z) is free and acyclic on the models (∆p,∆q,∆r).

*p. 62. In Definition 3.14 change “Sq(X)” to “Sp(X).”

*p. 71, line 8. Change to “If M is closed...”

*p. 71, Theorem 3.26. Add: “The integers Z can be replaced by Z/2 in Theorem 3.26,
and all assertions continue to hold. Moreover, with Z/2 coefficients the assertions hold for
non-orientable manifolds as well.”

*p. 72, line 8. Solving Exercise 48 requires knowing that the homology groups of a
compact manifold are finitely generated abelian groups. This can be shown by proving
that any manifold embeds in RN for some N in such a way that it is a retract of a finite
subcomplex of RN . Morse theory gives an easy proof that a smooth compact manifold is
homotopy equivalent to a CW-complex with finitely many cells.

*p. 73, line 5 and 6. Change to “(4ℓ+ 2)-dimensional” and “H2ℓ+1(M).”

*p. 73, Theorem 3.27. As stated, the last sentence of Theorem 3.27 is only true for
forms with non-negative signature. A more precise and complete statement is the following.
If an even indefinite form Q has signature σ and rank r, let m = 1

8 |σ|, ϵ be the sign of σ,

i.e. ϵ = σ
|σ| if σ ̸= 0 and ϵ = 0 if σ = 0, and let ℓ = 1

2 (r − |σ|), so that ℓ > 0. Then Q is

equivalent to

⊕ℓ

(
0 1
1 0

)
⊕m ϵE8.

*p. 74, lines 8–11. The list should read:
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There are
1 even, positive definite rank 8 forms
2 ” rank 16 ”
24 ” rank 24 ”

≥ 107 ” rank 32 ”
≥ 1051 ” rank 40 ”

This data is taken from the book Symmetric Bilinear Forms by Milnor and Husemoller.

*p, 75, line -6. Insert “oriented”, i.e. “Now suppose that M is a closed and oriented
manifold of dimension 2k − 1.”

p. 75, Exercise 55. Add the hypothesis that X is a finite complex. This guarantees that
the abelian groups Hn(X;Q/Z) are torsion.

*p, 77, line -1. Change “g(x)” to g · x.”

*p, 80, line 1. That a locally trivial bundle is the same thing as a fiber bundle with
structure group Homeo(F ) depends on what topology one uses on Homeo(F ), since with
our definition we require the transition functions U → G to be continuous. A solution would
be to topologize Homeo(F ) so that a map X → Homeo(F ) is continuous if and only if the
adjoint map X ×F → F is continuous. Often, but not always, this condition is satisfied by
the compact open topology (see Theorem 6.5).

*p. 85, line 3 and 4. Switch φ and φ′.

*p. 85, line 7. Change “E/G” to “P/G.”

*p. 88, line -4. Change the sentence starting “This is clearly a homomorphism...” to
“This is an anti-homomorphism: if a ∈ A, γ̃1 is a lift of γ1 starting at a, and γ̃2 is a lift of
γ2 starting at γ̃1(1), then γ̃1γ̃2 is a lift ot γ1γ2 starting at a. Thus the function π1(B, ∗) →
Aut(A) is an anti-homomorphism, which can be turned into a homomorphism by composing
with the map Aut(A) → Aut(A) given by f 7→ f−1.”

*p. 89, line 16. In Definition 4.9, note that r is a G-homeomorphism.

*p. 90, Definition 4.11. Change to “...from p : E → B to p′ : E′ → B′ is a pair of...”
and label the vertical arrows in the diagram.

*p, 90, line -7. Change “p−1(U ′)” to “(p′)−1(U ′).”

*p. 91, line -10. Change “q : f∗(E) → B” to “q : f∗(E) → B′” and “E×B” to “B′×E.”

*p. 99, line 4. Change to “...on the right, A is... ”.

*p. 99, Second displayed formula and Exercise 74. Change to “HomZπ(S∗X̃, Aρ)”.

*p. 99, line -4. Delete “with the trivial left π action”.
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*p. 99, line -2. Replace the “M” with “m”.

*p. 100, lines 11 and 12. Replace “HomZ(S∗X,Z)” with “HomZ(S∗X̃,Z)” and “com-
pact,” with “a CW-complex of finite type (i.e. a finite number of cells in each dimension),
then”.

*p. 100, line 20. Change to “For each cell e of X, choose a cell ẽ above e in X̃.”

*p. 101, line 1. Change to “ Given n > 1, let ρ : π1(RPn)...”

*p. 101, line -15. Change to “let V be an open set in M .”

*p 104, line 8. Change to γ−1
σ (a) in the displayed formula, so it should read

aσ 7→ γ−1
σ (a)(σ ◦ fk

0 ) +

k∑
m=1

(−1)m a (σ ◦ fk
m).

*p. 108, line 12. Replace “C∗(B̃ ⊗Zπ V )” with “C∗(B̃)⊗Zπ V ”

*p. 109, line 16. Change to “....can be taken to be X =...”.

*p. 109, line 17. Change to “....is open in Xi for all i.”

*p. 112, line 13. Delete “with finitely many cells in each dimension” and add a line:
“4. The product of two CW-complexes, one of which has a finite number of cells in each

dimension.”

*p. 113, line 20. Add a line: “3. If X and Y are CW-complexes, so is k(X × Y ).”

*p. 116, line 11. Change f∗(E) → B to f∗(E) → X.

*p. 118, figure at bottom of page. The “missing” edge on the box on the left should
be the right edge, not the top edge.

*p. 122, line 5. Change “((” to “(”.

*p. 124, line -3. After the displayed equation change to “where αs is the path t 7→ α(st).”

*p. 126. In the left commutative triangle near the bottom of the page, label the southwest
arrrow “p.”
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*p. 128. The first two diagrams on p. 128 are wrong. The first should be:

Z

XI X

Y I Y

p p p p p p p p psS
S
S
S
S
Sw

PPPPPPPPPPq

?
fI

-
eval. at 0

?
f

-eval. at 0

and the second:

Z

X × I X

Y × I Y

ppppppppp
ppk

�
i0

PPPPPPPPPPPi

6
f×I

S
S

S
S

S
S
So

� i0

6
f

*p. 128 Delete the sentence “In particular the neighborhood U = {x ∈ X|u(x) < 1} of A
deformation retracts to A.”

*p. 130, line 5. The sketch of the Proof of Theorem 6.23 is not on target. It works if A is
the k-skeleton of a (k+1)-dimensional complex X, but for a general subcomplex, additional
constructions are needed.

*p. 133, line -2. Replace “H(−, 1)” by “F (−, 1).”

*p. 135, line 6. Change to “ Thus f is homotopic to a map with image in the fiber F , so
...”

*p. 136. line above Definition 6.32. Change to “compactly generated topology obtained
from the compact-open topology”

*p. 136. The displayed equation in Definition 6.32 has a typo: one of the “∪” should be a
“×.” It should read

X ∧ Y =
X × Y

X ∨ Y
=

X × Y

X × {y0} ∪ {x0} × Y
.

*p. 137, line 7. Replace “ΣX/X × {0}” with “(X × I)/(X × {0})”

*p. 127, 138 and the proof of Theorem 6.39 part 1, p. 138. The following result is
needed to justify the the notion of “the” fiber of a map.

Proposition. Let p : E → B and p′ : E′ → B be fibrations and suppose there exists a
homotopy equivalence h : E → E′ so that p′h is homotopic to p. Then p and p′ are fiber
homotopy equivalent. In particular the fibers of p and p′ are homotopy equivalent.

A simple consequence of this fact is that if one turns a map into a fibration in two different
ways, then the resulting fibrations are fiber homotopy equivalent. This is needed to justify
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the last step of the proof of Theorem 6.39 part 1. The commutative triangle on p. 140
shows that the inclusion F → E can be replaced by the fibration (Pf )0 → E with homotopy
fiber Ωb0B. But this is not the same fibration as Pi → E in Theorem 6.18 starting with the
inclusion map i : F ⊂ E. The proposition shows that if the fiber of some fibration replacing
i : F ⊂ E is Ωb0B, then the fiber of every fibration replacing i : F ⊂ B has the homotopy
type of Ωb0B.

Proof. (due to Dold) First, we may assume that p′h = p by using the homotopy lifting
property (HLP) for p′: just lift a homotopy from p′h to p starting at h. Its other endpoint

is a map ĥ homotopic to h satisfying p′ĥ = p. Since h and ĥ are homotopic, ĥ is also a
homotopy equivalence.

So assume p′h = p and let h′ : E′ → E be a homotopy inverse for h. Let F : E′× [0, 1] →
E′ be a homotopy between hh′ and IdE′ . Let Ḡ = p′F , so Ḡ : E′ × [0, 1] → B. Since
Ḡ(e′, 0) = p′(F (e′, 0)) = p′(h(h′(e′))) = p(h′(e′)), the HLP for p implies that there is a lift
G : E′ × [0, 1] → E of Ḡ with G(e′, 0) = h′(e′). Then p(G(e′, 1)) = Ḡ(e′, 1) = p′(F (e′, 1)) =
p′(e′). In other words, if we define h′′ : E′ → E to be G(−, 1), i.e. h′′(e′) = G(e′, 1), then
h′′ is a homotopy inverse for h which preserves fibers, i.e. ph′′ = p′. We will show that h′′

is a fiber homotopy inverse of h.
Given a homotopies R,S : X × [0, 1] → Y let R−1 denote the reverse homotopy, i.e.

R−1(x, t) = R(x, 1 − t) and let R ∗ S denote the composite homotopy (assuming R(x, 1) =
S(x, 0))

R ∗ S(x, t) =

{
R(x, 2t) if t ≤ 1/2,

S(x, 2t− 1) if t ≥ 1/2.

Let H : E′ × [0, 1] → E′ be the composite H = (hG)−1 ∗ F , which is defined since
hG(e′, 0) = hh′(e′) = F (0). Thus H is a homotopy from hh′′ to IdE′ . Since p′F = Ḡ =
pG = p′hG, p′H(e′, t) = p′H(e′, 1 − t). In other words, viewing p′H as a loop [0, 1] →
Map(E′, B), this loop is obtained by traveling along a path and then returning along the
same path. There is an obvious nullhomotopy obtained by traveling less and less along the
path and returning. Precisely, define K̄ : E′ × [0, 1]× [0, 1] by

K̄(e′, t, s) =

{
p′H(e′, (1− s)t) if t ≤ 1/2,

p′H(e′, (1− s)(1− t)) if t ≥ 1/2.

Then K̄(e′, t, 0) = p′H(e′, t), K̄(e′, t, 1) = p′(e′), K̄(e′, 0, s) = p′(e′), and K̄(e′, 1, s) = p′(e′).
We will use the HLP to lift K̄ to a fiber preserving homotopy using an argument similar

to the argument on the bottom of page 118. Let U ⊂ I × I be the union of the three sides

U = {(t, s) | s = 0 } ∪ {(t, s) | t = 0 } ∪ {(t, s) | t = 1 }.

Let K : E′ × U → E′ be the map

K(e′, t, s) =


H(e′, t) if s = 0,

h(h′′(e′)) if t = 0,

e′ if t = 1.

Since there is a homeomorphism I × I ∼= I × I taking U to I × {0} = {(t, s) | s = 0 },
the HLP implies that K extends to a map K : E′ × I × I → E′ satisfying p′K = K̄.
Let D : E′ × I → E′ be the endpoint of this map, i.e. D(e′, t) = K(e′, t, 1). Then
D(e′, 0) = h(h′′(e′)), D(e′, 1) = e′, and p′(D(e′, t)) = K̄(e′, t, 1) = p′(e′). In other words, D
is a fiber preserving homotopy between hh′′ and IdE′ .

Now repeat the entire argument to h′′ to find a map h′′′ : E → E′ and fiber preserving
homotopy between h′′h′′′ and IdE . Use the notation “∼F ” for fiber preserving homotopic.
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Then

h′′h ∼F h′′hh′′h′′′ ∼F h′′h′′′ ∼F IdE .

In other words h : E → E′ and h′′ : E′ → E are fiber homotopy inverses.

*p. 141, line -1. Change “ν(f ∨ g)” to “(f ∨ g) ◦ ν.”

*p. 142, line -7. Change to “... an “inversion” map φ : Z → Z which ...”

*p. 144, line 16. Change to “..a map f : X → Y of CW complexes is a homotopy
equivalence ...’

*p. 147, line 2. Replace “Chapter 3” by “Chapter 5.”

*p. 155, line 12. Replace “The fiber L(X,A) and cofiber X/A” by “For example,
ΩL(X,A) and X/A”

*p. 156, in figure. Replace “f0 ≃
v
f1” by “f0 ≃

v
f2”

*p. 157, line 1. Replace “action” by “right action.”

*p. 157, line 3 and line 15. Replace “[u][f ]” by “[f ][u].”

*p. 157, line 16. Replace “[u][f0]” by “[f0][u].”

*p. 159, line -5. Replace “u · [f ]” by “[f ][u].”

*p. 159, line -1. Delete “for all n”

*p. 166, paragraph following item 4. delete “relative” twice.

*p. 167, line -3. Change “homology” to “cohomology.”

*p. 167-187. The n-skeleton of a CW complex X is denoted by Xn in these pages, and
by Xn in the rest of the book.

*p. 167. Exercise 117 is wrong.

*p. 168, last line of Section 7.1. Change to “corresponding generalized homology and
cohomology theories”

*p. 170, line 8. Change to “..., so π1(Xn+1, Xn) = 0 for n ≥ 1”.

*p. 171, line 11. Change “..., which equals [fi] ∈ [Sn, Y ] =...” to “..., which equals
[g ◦ fi] ∈ [Sn, Y ] =...”

*p. 173, line -3. Replace “g′ by f1.
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*p. 174, line 12. Replace “Sn−1 by Dn.

*p. 175, line 12. Replace “Cn by Cn+1.

*p. 175, line 3. Change to ”...but maybe even on the (n− 1)-cells...”

*p.176, line 19. Change “f can be extended to Xn−1” to “f can be extended to Xn.”

*p.178, line -7. Change “Hn(X,π)” to “Hn(X;π)”

pg 186, line -8. Change “...does not factor through a face map.” to “...does not factor
through a degeneracy map, i.e. a linear projection onto one of its n− 1 dimensional faces.”

*p.189, line -6. Change “n-simple” to “n-simple.”

*p.201, Exercise 132. Replace “with negatives given by . . . ” by
“with negatives given by composing with a map f : Sk → Sk of degree −1,

−[V0] = [f(V0)].
′′

*p.212, line -15. Change “leads” to “lead”

*p.217, line -6. Change “spectral” to “spectra”

*p.219, line -9. Change “...the homotopy fiber of f : B → BG is in fact a homotopy
equivalence.” to “...the homotopy fiber of f : B → BG is in fact homotopy equivalent to
E.”

*p. 220, line 19. Change “...continuous groups..” to “...topological groups...”

*p. 225, line 3. Replace “α−1(X × U) → Dℓ/Sℓ” with “α−1(X+ ∧ p−1(U)) → Dℓ/Sℓ−1

where p : EGℓ ×Gℓ
int Dn → BGℓ”.

*p. 230, line 1. Change “with” to “which is the union of”

*p. 232, line 6. Replace “... axioms A1, A2, A3, and A5.” by “... axioms A1, A2, A3,
and A4.”

*p. 234, line 9. Replace “...ν(Q ↪→ n)” by “... ν(Q ↪→ N).”

*p. 237, line -1. Replace “1.2 · · · ’ by “1, 2, · · · ”

*p. 240, line 1. To say the filtration preserves the grading means that Fp = ⊕n(Fp∩An) =
⊕nFp,n−p where we think of A = ⊕nAn.

*p. 241, Definition 9.21, part 2. The second condition should read:
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2. there is a convergent filtration of A∗ so that for each n the colimit
E∞

p,n−p = colim
r→∞

Er
p,n−p is isomorphic to the associated graded module Gr(An)p.

*p. 244, line -3. Delete “(k, q) ̸= (0, 0)”

*p. 245, line 1. Replace “H0(ΩS
k) = 0” by “H0(ΩS

k) = Z”

*p. 246, line 13. Replace “Since F−1,n−1 = 0” by “Since F−1,n+1 = 0”

*p. 248, line -3. Replace “Ek
k,0” by “Er

k,0”

*p. 250, Equation (9.9) and the exact sequence on line 19. Replace “E∞
1,1” by

“F1,1.” Thus the exact sequence should read

F1,1 → H2(E) → H2(B) → H0(B;H1(F )) → H1(E) → H1(B) → 0.

Also, further in that paragraph (line -11) Change “H2(E)” to “H1(E).”

*p. 251, line -13. Change ”cohomology” to ”homology.”

*p. 255, line 10. Similar comment as p 240.

*p. 255, Definition 9.21. The second condition should read:

2. there is a convergent filtration ofA∗ so that for each n the limit Ep,n−p
∞ = ∩r≥r0E

p,n−p
r

is isomorphic to the associated graded module Gr(An)p.

*p. 258, line -9. Replace “... for path space...” by “... for the path space...”

*p. 261, line 1 and 2. Replace both occurences of d3 by d3.

*p. 264, line 21. Change “X̃ → X̃ ×G EG → X” to “X̃ → X̃ ×G EG → BG.”

*p 265, lines -11 and line-7 Change dk to dk+1.

p. 273, line -7. Change “Hn−1(X)” to “Hn(X)”

*p. 274 line 6 and 7 change two ”< n” to “≤ n” i.e. “ ... is a C-isomorphsm for 0 < i ≤ n.
”

*p. 274 line - 7. Omit “with Hi(X,A) ∈ C for i < n.”

*p. 275 line - 7. Change “πk−1(L) = πk(X,A) = 0.” to “πk−1(L) = πk(X,A).”

*p. 276, line -3. Change “Hn(T ) is finite...” to “Hk(T ) is finite...”

*p. 278, line -6. Change “H5(F ;Z/2)” to “H5(Y ;Z/2)”
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p. *279, line -14. Change “[X,ΩSX]0” to “[X,ΩSY ]0”

*p. 286. Theorem 10.21 is an immediate consequence of the Serre exact sequence for
cohomology.

*p. 289, line 20. Change “te” to “the”.

*p. 291, line -2. Change “τ(ι22)” to “τ(ι21)”.

*p. 293, line 16. Change “defining xr = 0 for r < 0” to “defining yr = 0 for r < 0”.

*p. 295, first paragraph. All occurences of the digit “8” should be changed to a “9” in
this paragraph. Thus the paragraph should read as follows.

Let y ∈ H5(SX) denote the non-zero element. Suppose to the contrary that Sh is
nullhomotopic. Then SX is homotopy equivalent to the wedge S5 ∨ S9. In particular the
map Sq4 : H5(SX) → H9(SX) is trivial, since if y is the non-zero element of H5(S5 ∨ S9),
then y is pulled back from H5(S5) via the projection S5 ∨ S9 → S5, but H9(S5) = 0 and
so by naturality Sq4(y) = 0.

p. *295, lines 19 and 22. Change “Hk+n(SnB)” to “H̃k+n(Sn(B+))”.

p. *297, line 9. Change “u to ũ” to “ũ to u”.

p. *306, line 15. Change “no-zero” to “non-zero”.

*p. 309, statement of Theorem 10.39. Change “Stiefel-Whitney numbers” to “Stiefel-
Whitney classes”.

*p. 310, line -11. Replace “H∗(BO(n− 1)” by “H∗(BO(n− 1))”

*p. 311. The first exact sequence should read:

· · · → Hk−1(BO(n)) → Hk−1(BO(n− 1)) →
Hk−n(BO(n))⊗Hn−1(Sn−1)

dn−→Hk(BO(n)) → Hk(BO(n− 1)) → · · ·
and the sequence (10.18) should read:

0 → Hk−n(BO(n))⊗Hn−1(Sn−1)
dn−→Hk(BO(n)) → Hk(BO(n− 1)) → 0

Also, on line 15, change “dn([S
n−1]∗ ∪ α) = wn ∪ α” to “dn(α⊗ [Sn−1]∗) = α ∪ wn ”.

*p. 313, last line. The third condition should read: “3. Hi(L(P )(X);Z(P )) = Hi(L(P )(X);Z)
for i > 0.”

*p. 315-316. In the discussion from the middle of page 315 to the middle of page 316 all
cohomology should be with rational coefficients.

*p. 318. Replace the statement of Theorem 10.46 by
The map taking a manifold to its Stiefel–Whitney numbers induces an monomorphism

⊕α∈Pn
wα : ΩO

n → ⊕α∈Pn
Z/2.
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In other words, two closed manifolds are bordant if and only if they have the same Stiefel-
Whitney numbers.

Moreover, ΩO
∗ is a polynomial ring over Z/2 on generators xk ∈ ΩO

k , one for each non-
negative integer k not of the form 2m−1. Thus ΩO

n is a Z/2 vector space of rank the number
of partitions in Pn of the form (i1, · · · , in) satisfying ik = 0 when k = 2j − 1.

*p. 320, line 7. Change “πk(X)” to “πk−1(X)”

*p. 321, line 2. Change “Sn” to “Sn+1”

*p. 327, line -8. This line should read
We assume all rings have the property that Rm ∼= Rn implies m = n.

*p. 333, line -7. The summation should be over j, not i.

*p. 334, line 5. Change “|n| ≤ N” to “|n| ≥ N ” and on the next line change “n ≥ N”
to “n < N”.

*p. 334, line 20. Change “a acyclic” to “an acyclic”

*p. 335, line 11. Change “an chain” to “a chain”

*p. 337, line 9. Change “s∂∂(y)” to “ss∂(y)”

*p. 339, line -8. Replace “C ′
n → Cn” by “Cn → C ′

n”

*p. 339, line -4. Delete “acyclic”

*p. 340, line -15. Replace the proof of Lemma 11.24 by the following :

Proof. (taken from [7, p. 48]). Equivalently we will find a chain map t : C ′′ → C
which splits p. Let δ′′ be a chain contraction for C ′′. Let σ : C ′′ → C be a sequence of
homomorphisms σk : C ′′

k → Ck which split Ck → C ′′
k . Finally let t = ∂σδ′′ + σδ′′∂′′. Note

that ∂t = ∂σδ′′∂′′ = t∂′′, so t is a chain map. Note pt = p∂σδ′′ + δ′′∂′′ = ∂′′pσδ′′ + δ′′∂′′ =
∂′′δ′′ + δ′′∂′′ = IdC′′ , so p splits t.

*p. 340, line -3. Change “Lemma 11.23” to “Theorem 11.23.”

*p. 341, line -11. Change “Cone(C)” to “SCone(C).”

*p. 342, line 13. Change “C(g ◦ f)” to “C(g ◦ f)n.”

*p. 345, line 1. Change “(k+1)-cell” to “(k+2)-cell” and “i ̸= k, k+1” to “i ̸= k, k+2.”

*p. 345, line 7 and line 15. Change “C(L̃, K̃)” to “C∗(L̃, K̃).”

*p. 346, line 5. Change “over S” to “over R.”
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p. *346, line -4. Change “∆R(C∗(X)) ∈ R×” to “∆R(C∗(X̃)) ∈ R×/± 1.”

*p. 347. The displayed equation in Proposition 11.34 should read:

det(ρ(τ(f)) = ∆R(Y )/∆R(X) ∈ R×/±G.

*p. 348, Exercise 203. Change “s̃∂ − ∂s̃” to “s̃∂ + ∂s̃.”

*p. 350, Exercise 204. Change “R3 − {∞}” to “R3 ∪ {∞}.”

*p. 350, Exercise 205. Change “the real projective plane” to “real projective 3-space.”

*p. 354, line 3. Change “covers” to “cover.”

*p. 355, line -14. Change “2 cos(bπ/p)” to “2 sin(bπ/p).”

*p. 356, line 3. Change to “ In particular, q ≡ (q′)±1 mod p.”

*p. 356, line 9. Change

1 = (ζa − 1)(ζ−a − 1)(ζar − 1)(ζ−ar − 1)(ζ − 1)(ζ−1 − 1)(ζr
′
− 1)(ζ−r′ − 1)

to

1 = (ζa − 1)(ζ−a − 1)(ζar − 1)(ζ−ar − 1)
[
(ζ − 1)(ζ−1 − 1)(ζr

′
− 1)(ζ−r′ − 1)

]−1

*p. 356, line -11. Change “first” to “second.”
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